C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

IBC 6

Titen HD® Heavy-Duty Screw Anchor

Titen HD Anchor Product Data — Zinc Plated

TILEN ND AI	nchor Product L	Jala — Z	inc Plate	a	
Size	Madel No	Drill Bit	Wrench	Qua	ntity
(in.)	Model No.	Dia. (in.)	Size (in.)	Box	Carton
1/4 x 1 7/8	THDB25178H	1/4	3/8	100	500
1/4 x 23/4	THDB25234H	1/4	3/8	50	250
1/4 x 3	THDB25300H	1/4	3/8	50	250
1/4 x 3 1/2	THDB25312H	1/4	3/8	50	250
1/4 x 4	THDB25400H	1/4	3/8	50	250
3/8 X 13/4	THD37134H [†]	3/8	9/16	50	250
3/8 X 21/2	THD37212H [†]	3/8	9/16	50	200
3/8 X 3	THD37300H	3/8	9/16	50	200
3/8 x 4	THD37400H	3/8	9/16	50	200
3/8 X 5	THD37500H	3/8	9/16	50	100
3/8 x 6	THD37600H	3/8	9/16	50	100
½ x 3	THD50300H	1/2	3/4	25	100
½ x 4	THD50400H	1/2	3/4	20	80
½ x 5	THD50500H	1/2	3/4	20	80
½ x 6	THD50600H	1/2	3/4	20	80
½ x 6½	THD50612H	1/2	3/4	20	40
½ x 8	THD50800H	1/2	3/4	20	40
½ x 12	THD501200H	1/2	3/4	5	25
½ x 13	THD501300H	1/2	3/4	5	25
½ x 14	THD501400H	1/2	3/4	5	25
½ x 15	THD501500H	1/2	3/4	5	25
5⁄8 x 4	THDB62400H	5⁄8	¹⁵ /16	10	40
% x 5	THDB62500H	5/8	¹⁵ /16	10	40
% x 6	THDB62600H	5/8	¹⁵ / ₁₆	10	40
5% x 61/2	THDB62612H	5/8	¹⁵ / ₁₆	10	40
% x 8	THDB62800H	5⁄8	¹⁵ /16	10	20
% x 10	THDB62100H	5⁄8	¹⁵ /16	10	20
3/4 x 4	THD75400H	3/4	11/8	10	40
3/4 x 5	THD75500H	3/4	11/8	5	20
3/4 x 6	THDT75600H	3/4	11/8	5	20
3/4 x 7	THD75700H	3/4	11/8	5	10
3/4 x 8 1/2	THD75812H	3/4	11/8	5	10
3/4 x 10	THD75100H	3/4	11/8	5	10

Titen HD Anchor Product Data — Mechanically Galvanized

Size	Model	Drill Bit Dia.	Wrench	Qua	ntity
(in.)	No.	(in.)	Size (in.)	Box	Carton
3/8 x 3	THD37300HMG			50	200
3/8 x 4	THD37400HMG	3/8	9/16	50	200
3/8 x 5	THD37500HMG	9/8	716	50	100
3% x 6	THD37600HMG			50	100
½ x 4	THD50400HMG			20	80
½ x 5	THD50500HMG			20	80
½ x 6	THD50600HMG	1/2	3/4	20	80
½ x 6½	THD50612HMG			20	40
½ x 8	THD50800HMG			20	40
% x 5	THDB62500HMG			10	40
5⁄8 x 6	THDB62600HMG	5/	15/	10	40
5% x 61/2	THDB62612HMG	5/8	15/16	10	40
5⁄8 x 8	THDB62800HMG			10	20
3⁄4 x 6	THDT75600HMG			5	20
3/4 x 81/2	THD75812HMG	3/4	11/8	5	10
3/4 x 10	THD75100HMG			5	10

Mechanical galvanizing meets ASTM B695, Class 65, Type 1. Intended for some pressure-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See p. 248 or visit strongtie.com/info for more corrosion information.

† These models do not meet minimum embedment depth requirements for strength design and require maximum installation torque of 25 ft. - lb. using a torque wrench, driver drill or cordless 1/4" impact driver with a maximum permitted torque rating of 100 ft. - lb.

Titen HD Installation Information and Additional Data ¹										LW		
Characteristic	Symbol	Units				Nomina	l Anchor	Diamete	r, d _a (in.)			
Gilalacteristic	Syllibul	Ullits	1/4		3,	3/8 1/2		5/8		3/4		
		Install	ation Info	rmation								
Drill Bit Diameter	d _{bit}	in.	1,	/4	3,	/8	1,	/2	5,	/8	3	V ₄
Baseplate Clearance Hole Diameter	d_c	in.	3,	/8	1,	/2	5	/8	3,	V ₄	7	/8
Maximum Installation Torque	T _{inst,max}	ftlbf	2	4 ²	5	O ²	6	5 ²	10	00^{2}	15	50 ²
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	12	25 ³	15	0 ³	34	10 ³	34	10 ³	38	35 ³
Minimum Hole Depth	h _{hole}	in.	13/4	25/8	23/4	31/2	3¾	41/2	41/2	6	6	63/4
Nominal Embedment Depth	h _{nom}	in.	15/8	21/2	21/2	31/4	31/4	4	4	51/2	51/2	61/4
Critical Edge Distance	Cac	in.	3	6	211/16	3%	3%16	41/2	41/2	6%	6%	75/16
Minimum Edge Distance	C _{min}	in.	1½ 1¾									
Minimum Spacing	S _{min}	in.					(3				
Minimum Concrete Thickness	h _{min}	in.	31/4	31/2	4	5	5	61/4	6	81/2	83/4	10
		Ac	ditional l	Data								
Anchor Category	Category	_						1				
Yield Strength	f _{va}	psi	100	,000			-	97,	000			
Tensile Strength	f _{uta}	psi	125,000 110,000									
Minimum Tensile and Shear Stress Area	A _{se}	in ²	0.042 0.099)99	0.1	83	0.2	276	0.4	114	
Axial Stiffness in Service Load Range – Uncracked Concrete	eta_{uncr}	lb./in.	202,000 715,000									
Axial Stiffness in Service Load Range – Cracked Concrete	eta_{cr}	lb./in.	173,000 345,000									

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318 Appendix D.
- 2. Tinst, max is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench.
- 3. Timpact, max is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table.

^{*} See p. 13 for an explanation of the load table icons

Titen HD[®] Design Information — Concrete

Mechanical Anchors

Titen HD Tension Strength Design Data¹

Characteristic	Cumbal	Units				Nomina	Anchor	Diamete	r, d _a (in.)			
GHAFACTERISTIC	Symbol	UIIILS	1	/4	3,	3/8		/2	5/8		3/4	
Nominal Embedment Depth	h _{nom} in. 15% 2½ 2½ 3¼			31/4	4	4	5½	5½	61/4			
		Steel S	trength i	n Tension	1							
Tension Resistance of Steel	N _{sa}	lb.	5,1	95	10,	890	20,	130	30,	360	45,	540
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_					0.6	35 ²				
	Concre	ete Break	out Stre	ngth in Te	ension ^{6,8}							
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	04 1.77 2.40 2			2.99	2.97	4.24	4.22	4.86
Critical Edge Distance ⁶	Cac	in.	3	6	6 211/16 35/8 39/16 41/2 4					6 %	6%	75/16
Effectiveness Factor — Uncracked Concrete	<i>k</i> _{uncr}		30					24				
Effectiveness Factor — Cracked Concrete	k _{cr}						1	7				
Modification Factor	$\psi_{c,N}$						1	.0				
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_					0.0	35 ⁷				
		Pullout S	trength i	n Tensio	n ⁸							
Pullout Resistance, Uncracked Concrete (f' _c = 2,500 psi)	N _{p,uncr}	lb.	3	3	2,7004	3	3	3	3	9,8104	3	3
Pullout Resistance, Cracked Concrete (f' _c = 2,500 psi)	N _{p,cr}	lb.	3	1,9054	1,2354	2,7004	3	3	3,0404	5,5704	6,0704	7,1954
Strength Reduction Factor — Concrete Pullout Failure	$\phi_{ ho}$	— 0.65 ⁵										
Breakou	ıt or Pullou	t Strengt	h in Tens	ion for S	eismic A	pplication	1S ⁸					
Nominal Pullout Strength for Seismic Loads (f' _c = 2,500 psi)	N _{p,eq}	lb. — 3 1,905 ⁴ 1,235 ⁴ 2,700 ⁴ — 3 — 3 3,040 ⁴ 5,			5,5704	6,0704	7,1954					
Strength Reduction Factor — Breakout or Pullout Failure	ϕ_{eq}		— 0.65 ⁵									

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of $\phi_{\rm Sa}$ applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318-11 D.4.4. Anchors are considered brittle steel elements
- 3. Pullout strength is not reported since concrete breakout controls.
- 4. Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by (f'c, specified / 2,500)0.5.
- 5. The tabulated value of ϕ_{Ω} or ϕ_{Θ} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 6. The modification factor $\psi_{cp,N}=$ 1.0 for cracked concrete. Otherwise, the modification factor for uncracked concrete without supplementary reinforcement to control splitting is either:

removement to control splitting is either:

(1)
$$\psi_{cp,N} = 1.0$$
 if $c_{a,min} \ge c_{ac}$ or (2) $\psi_{cp,N} = \frac{c_{a,min}}{c_{ac}} \ge \frac{1.5h_{ef}}{c_{ac}}$ if $c_{a,min} < c_{ac}$

The modification factor, $\psi_{cp,N}$ is applied to the nominal concrete breakout strength N , or N

strength, N_{cb} or N_{cbg} .

7. The tabulated value of $\phi_{\it CD}$ applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Concrete

Titen HD Shear Strength Design Data¹

Characteristic	Symbol	Nomin Units				Nomina	nal Anchor Diameter, d _a (in.)					
Glidiacteristic	Syllibul	UIIILS	1/.	4 ⁵	3,	/8	1,	/2	5/85		3/4	
Nominal Embedment Depth	h _{nom}	in.	1%	21/2	21/2 31/4		31/4	4	4	5½	51/2	61/4
		Steel	Strength	in Shear								
Shear Resistance of Steel	V _{sa}	lb.	2,0)20	4,4	160	7,4	55	10,	000	16,8	340
Strength Reduction Factor — Steel Failure	ϕ_{sa}						0.6	60 ²				
	Concrete Breakout Strength in Shear ⁶											
Outside Diameter	d _a	in.	0.:	25	0.3	375	0.500		0.625		0.750	
Load Bearing Length of Anchor in Shear	ℓ_e	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	4.22	4.86
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}						0.7	⁷ 0 ⁴				
	Co	ncrete P	ryout Str	ength in S	Shear							
Coefficient for Pryout Strength	k _{cp}	lb.			1.0					2.0		
Strength Reduction Factor — Concrete Pryout Failure	ϕ_{cp}	_	0.704									
	Steel Strength in Shear for Seismic Applications											
Shear Resistance for Seismic Loads	V _{eq}	lb.	1,695 2,855		4,7	'90	8,0	000	9,3	350		
Strength Reduction Factor — Steel Failure	ϕ_{eq}	_	$-$ 0.60 2									

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of $\phi_{\rm Sa}$ applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of $\phi_{\rm Sa}$ must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where
- supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACl 318-14 17.3.3(c) or ACl 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACl 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACl 318-11 D.4.4(c).
- 4. The tabulated value of ϕ_{cp} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ_{cp} must be determined in accordance with ACI 318-11 Section D.4.4(c).

Titen HD Tension and Shear Strength Design Data for the Soffit of Normal-Weight or Sand-Lightweight Concrete over Metal Deck^{1,6,8}

						Nomina	l Anchor	Diameter	; d _a (in.)			
Characteristic	Cumbal		Lower Flute						Upper Flute			
GHAFACTERISTIC	Symbol Units Figure 2		Figu	ire 1		Figu	ıre 2	Figu	ire 1			
			1/	48	3,	8	1,	/2	1/.	48	3/8	1/2
Nominal Embedment Depth	h _{nom}	in.	1%	2½	17/8	21/2	2	3½	1%	21/2	17/8	2
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.23	1.77	1.29	2.56	1.19	1.94	1.23	1.29
Pullout Resistance, concrete on metal deck (cracked) ^{2,3,4}	N _{p,deck,cr}	lb.	420	535	375	870	905	2,040	655	1,195	500	1,700
Pullout Resistance, concrete on metal deck (uncracked) ^{2,3,4}	N _{p,deck,uncr}	lb.	995	1,275	825	1,905	1,295	2,910	1,555	2,850	1,095	2,430
Steel Strength in Shear, concrete on metal deck ⁵	V _{sa, deck}	lb.	1,335	1,745	2,240	2,395	2,435	4,430	2,010	2,420	4,180	7,145
Steel Strength in Shear, Seismic	V _{sa, deck,eq}	lb.	870	1,135	1,434	1,533	1,565	2,846	1,305	1,575	2,676	4,591

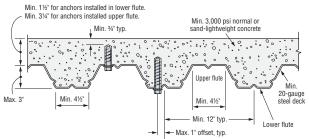
- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by $(f'_{c,specified}/3,000)^{0.5}$.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, as shown in Figure 1 and Figure 2, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors
- installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies $N_{P,deck,cr}$ shall be substituted for $N_{P,cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete $N_{P,deck,uncr}$ shall be substituted for $N_{P,uncr}$.
- 5. In accordance with ACl 318-14 Section 17.5.1.2(C) or ACl 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies $V_{sa,deck}$ and $V_{sa,deck,eq}$ shall be substituted for V_{sa} .
- 6. Minimum edge distance to edge of panel is 2hef.
- 7. The minimum anchor spacing along the flute must be the greater of $3h_{\rm eff}$ or 1.5 times the flute width.

^{*} See p. 13 for an explanation of the load table icons

Sand-light weight concrete or normal-weight concrete over steel decl (minimum 3,000 psi)

in the Soffit of Concrete over Metal Deck

Titen HD® Design Information — Concrete



Titen HD Anchor Tension and Shear Strength Design Data in the Topside of Normal-Weight Concrete or Sand-Lightweight Concrete over Metal Deck

IBC 1		*
-------	--	---

			Nominal Anchor Diameter, d _a (in.)				
Design Information	Symbol	Units	Figure 3	Figure 3			
			1/4	%			
Nominal Embedment Depth	h _{nom}	in.	1 %	2½			
Effective Embedment Depth	h _{ef}	in.	1.19	1.77			
Minimum Concrete Thickness	h _{min,deck}	in.	2½	31⁄4			
Critical Edge Distance	C _{ac,deck,top}	in.	3¾	71/4			
Minimum Edge Distance	C _{min, deck, top}	in.	3½	3			
Minimum Spacing	S _{min,deck,top}	in.	3½	3			

- 1. For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figures 2 and 3, the nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , respectively, must be calculated in accordance with ACI 318-14 Section 17.5.2 or ACI 318-11 Section D.6.2, using the actual member thickness, $h_{min,deck}$, in the determination of A_{vc} .
- 2. Design capacity shall be based on calculations according to values in the tables featured on pp. 116-118.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is 11/2" (see Figures 2 and 3).
- 4. Steel deck thickness shall be minimum 20 gauge.
- 5. Minimum concrete thickness ($h_{min,deck}$) refers to concrete thickness above upper flute (see Figures 2 and 3).

in the Soffit of Concrete over Metal Deck

Min. 12° typ.

Min. 12° typ.

Min. 12° typ.

Min. 13°

M

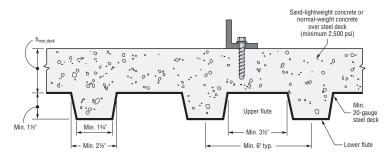


Figure 3. Installation of 1/4"- and %"-Diameter Anchors in the Topside of Concrete over Metal Deck

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

^{*} See p. 13 for an explanation of the load table icons.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Masonry

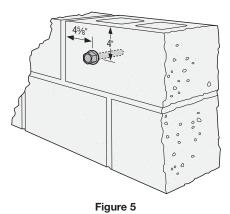
Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

IBC	1	→	*
tweight. I	Medium	-Weigh	nt

Size	Drill	Min. Embed.	Critical Edge	Critical End	Critical Spacing	Values for 8" Lightweight, Medium-W or Normal-Weight Grout-Filled CN					
in. (mm)	Bit Dia.	Depth in.	Dist. in.	Dist. in.	Dist.	Tensio	Tension Load		^r Load		
(11111)	in.	(mm)	(mm)	(mm)	(mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)		
	Anchor Installed in the Face of the CMU Wall (See Figure 4)										
3/8 (9.5)	3/8	2¾ (70)	12 (305)	12 (305)	6 (152)	2,390 (10.6)	480 (2.1)	4,340 (19.3)	870 (3.9)		
½ (12.7)	1/2	3½ (89)	12 (305)	12 (305)	8 (203)	3,440 (15.3)	690 (3.1)	6,920 (30.8)	1,385 (6.2)		
5% (15.9)	5/8	4½ (114)	12 (305)	12 (305)	10 (254)	5,300 (23.6)	1,060 (4.7)	10,420 (46.4)	2,085 (9.3)		
3/4 (19.1)	3/4	5½ (140)	12 (305)	12 (305)	12 (305)	7,990 (35.5)	1,600 (7.1)	15,000 (66.7)	3,000 (13.3)		

in this area for reduced allowable allowable load capacity 4" minimum end distance Critical end distance (see load table) No installation within 1½" of head joint Installations in this area for full allowable load capacity

Critical edge distance (see load table)


edge distance

- Figure 4. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU
- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, \mathbf{f}'_{m} , at 28 days is 1,500 psi.
- 5. Embedment depth is measured from the outside face of the concrete masonry unit.
- 6. Allowable loads may be increased 331/3% for short-term loading due to wind or seismic forces where permitted by code.
- 7. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 8. Refer to allowable load-adjustment factors for spacing and edge distance on p. 123.

Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

	Drill	Embed.	Min.	Min.	8	" Hollow CMI on CMU	J Loads Base Strength	ed	
Size in. (mm)	Bit Dia.	Depth ⁴ in.	Edge Dist. in.	End Dist. in.	Tensio	n Load	Shea	r Load	
()	in.	(mm)	(mm)	(mm)			Ultimate lb. (kN)	Allowable lb. (kN)	
Anchor Installed in Face Shell (See Figure 5)									
3/8 (9.5)	3/8	13/4 (45)	4 (102)	4 5% (117)	720 (3.2)	145 (0.6)	1,240 (5.5)	250 (1.1)	
1/2 (12.7)	1/2	13/4 (45)	4 (102)	4 % (117)	760 (3.4)	150 (0.7)	1,240 (5.5)	250 (1.1)	
5 /8 (15.9)	5/8	13/4 (45)	4 (102)	4 5/8 (117)	800 (3.6)	160 (0.7)	1,240 (5.5)	250 (1.1)	
3/4 (19.1)	3/4	13/4 (45)	4 (102)	4 5/8 (117)	880 (3.9)	175 (0.8)	1,240 (5.5)	250 (1.1)	

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 1/2"- through 1 1/4"-thick face shell.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 6. Do not use impact wrenches to install in hollow CMU.
- 7. Set drill to rotation-only mode when drilling into hollow CMU.

^{*} See p. 13 for an explanation of the load table icons

Titen HD® Design Information — Masonry

Titen HD® Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

IBC 1	→	
-------	----------	--

	Drill	Embed.	Min.	Min.	Critical	8"	Grout-Filled C	CMU Allowable	Loads Based	on CMU Streng	yth
Size in.	Bit Dia.	Depth Dist. Dist. Dist. Tension	Shear Perp. to Edge		Shear Parallel to Edge						
(mm)	in.	(mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)
	Anchor Installed in Cell Opening or Web (Top of Wall) (See Figure 6)										
½ (12.7)	1/2	4½ (114)	13/4 (45)	8 (203)	8 (203)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	2,920 (13.0)	585 (2.6)
5/8 (15.9)	5/8	4½ (114)	13/4 (45)	10 (254)	10 (254)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	3,380 (15.0)	675 (3.0)

- $1. The \ tabulated \ allowable \ loads \ are \ based \ on \ a \ safety \ factor \ of \ 5.0 \ for \ installations \ under \ the \ IBC \ and \ IRC.$
- 2. Values are for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, $f'_{\it m}$, at 28 days is 1,500 psi.
- 5. Allowable loads may be increased 331% for short-term loading due to wind or seismic forces where permitted by code.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 7. Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall.

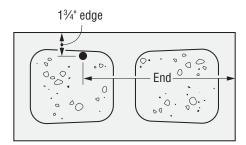
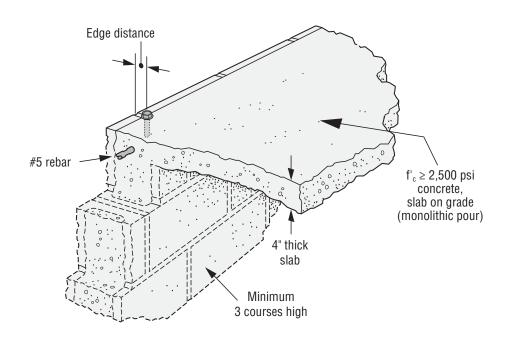


Figure 6. Anchor Installed in Top of Wall

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Masonry

Titen HD Allowable Tension Loads for 8" Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete



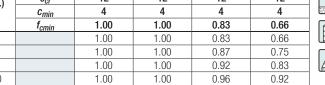
1		(== =
100 Lo	Ш	坤

Size	Drill Bit	Min. Embed. Depth	Min. Edge Dist.	Critical Spacing	8" Concrete-Filled CMU Chair Block Allowable Tension Loads Based on CMU Strength		
in. (mm)	Dia. (in.)	in. (mm)	in. in. (mm) (mm)		Ultimate lb. (kN)	Allowable lb. (kN)	
		2 % (60)	13/4 (44)	9½ (241)	3,175 (14.1)	635 (2.8)	
3/8 (9.5)	3/8	3 % (86)	13/4 (44)	13½ (343)	5,175 (23.0)	1,035 (4.6)	
		5 (127)	21/4 (57)	20 (508)	10,584 (47.1)	2,115 (9.4)	
1/2	1/2	8 (203)	21/4 (57)	32 (813)	13,722 (61.0)	2,754 (12.2)	
(12.7)	/2	10 (254)	21/4 (57)	40 (1016)	16,630 (74.0)	3,325 (14.8)	
5% (15.9)	5/8	5½ (140)	13/4 (44)	22 (559)	9,025 (40.1)	1,805 (8.1)	

- 1. The tabulated allowable loads are based on a safety factor of 5.0.
- 2. Values are for 8"-wide concrete masonry units (CMU) filled with concrete, with minimum compressive strength of 2,500 psi and poured monolithically with the floor slab.
- 3. Center #5 rebar in CMU cell and concrete slab as shown in the illustration below.

Mechanical Anchors

Titen HD[®] Design Information — Masonry


Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge or End Distance Tension (f_c)

	Dia.	3/8	1/2	5/8	3/4
	E	2¾	31/2	41/2	5½
c _{act} (in.)	C _{cr}	12	12	12	12
(111.)	C _{min}	4	4	4	4
	f _{cmin}	1.00	1.00	0.83	0.66
4		1.00	1.00	0.83	0.66
6		1.00	1.00	0.87	0.75
8		1.00	1.00	0.92	0.83
10		1.00	1.00	0.96	0.92
12		1.00	1.00	1.00	1.00

See notes below.

Edge or End Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Towards Edge or End)

	Dia.	3/8	1/2	5/8	3/4
c _{act} (in.)	E	2¾	31/2	4 1/2	5 1/2
	C _{cr}	12	12	12	12
(111.)	C _{min}	4	4	4	4
	f _{cmin}	0.58	0.38	0.30	0.21
4		0.58	0.38	0.30	0.21
6		0.69	0.54	0.48	0.41
8		0.79	0.69	0.65	0.61
10		0.90	0.85	0.83	0.80
12		1.00	1.00	1.00	1.00

- 1. E = Embedment depth (inches).
- $2. c_{act} = actual$ end or edge distance at which anchor is installed (inches).
- 3. c_{cr} = critical end or edge distance for 100% load (inches).
- $4. c_{min}$ = minimum end or edge distance for reduced load (inches).
- 5. f_c = adjustment factor for allowable load at actual end or edge distance.
- 6. f_{ccr} = adjustment factor for allowable load at critical end or edge distance. f_{ccr} is always = 1.00.
- 7. f_{cmin} = adjustment factor for allowable load at minimum end or edge distance.
- 8. $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

Spacing Tension (f_s)

	Dia.	3/8	1/2	5/8	3/4
_	E	2¾	31/2	4 1/2	5 1/2
s _{act} (in.)	S _{cr}	6	8	10	12
(111.)	Smin	3	4	5	6
	f _{smin}	0.87	0.69	0.59	0.50
3		0.87			
4		0.91	0.69		
5		0.96	0.77	0.59	
6		1.00	0.85	0.67	0.50
8			1.00	0.84	0.67
10				1.00	0.83
12					1.00

- 1. E = Embedment depth (inches).
- 2. s_{act} = actual spacing distance at which anchors are installed (inches).
- 3. s_{cr} = critical spacing distance for 100% load (inches).
- 4. s_{min} = minimum spacing distance for reduced load (inches).
- $5. f_s = adjustment factor for allowable load at actual spacing distance.$
- 6. f_{SCT} = adjustment factor for allowable load at critical spacing distance. f_{SCT} is always = 1.00.
- 7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 8. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})]$

Edge or End Distance Shear (f_c) Shear Load Parallel to Edge or End

	Dia.	3/8	1/2	5/8	3/4
c _{act} (in.)	E	23/4	31/2	41/2	51/2
	C _{cr}	12	12	12	12
(111.)	C _{min}	4	4	4	4
	f _{cmin}	0.77	0.48	0.46	0.44
4		0.77	0.48	0.46	0.44
6		0.83	0.61	0.60	0.58
8		0.89	0.74	0.73	0.72
10		0.94	0.87	0.87	0.86
12		1.00	1.00	1.00	1.00

See notes below.

IBC

IBC

Edge or End Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Away From Edge or End)

,		,		0	,
	Dia.	3/8	1/2	5/8	3/4
	E	23/4	31/2	4 1/2	51/2
c _{act} (in.)	C _{cr}	12	12	12	12
(111.)	C _{min}	4	4	4	4
	f _{cmin}	0.89	0.79	0.58	0.38
4		0.89	0.79	0.58	0.38
6		0.92	0.84	0.69	0.54
8		0.95	0.90	0.79	0.69
10		0.97	0.95	0.90	0.85
12		1.00	1.00	1.00	1.00

	Dia.	3/8	1/2	5/8	3/4
	E	23/4	3 1/2	4 1/2	51/2
s _{act} (in.)	S _{cr}	6	8	10	12
(111.)	Smin	3	4	5	6
	f _{smin}	0.62	0.62	0.62	0.62
3		0.62			
4		0.75	0.62		
5		0.87	0.72	0.62	
6		1.00	0.81	0.70	0.62
8			1.00	0.85	0.75
10				1.00	0.87
12					1.00

^{*} See p. 13 for an explanation of the load table icons.